
INTRODUCTION TO GENERAL 
RELATIVITY Curvature



RIEMANN CURVATURE TENSOR
• During the last lesson we had seen that given a derivative operator, there exists a notion

of how to parallel transport a vector from p to q along a curve C.
• We can use the path dependence of parallel transport to define an intrinsic notion of the

curvature.

If we substract from this the tensor 𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏(𝑓𝑓𝜔𝜔𝑐𝑐), the first three terms of the right-hand side of
the definition will cancel the corresponding terms of the expression for 𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏(𝑓𝑓𝜔𝜔𝑐𝑐) and we
obtain the simple result:

𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏 − 𝛻𝛻𝑏𝑏𝛻𝛻𝑎𝑎)(𝑓𝑓𝜔𝜔𝑐𝑐 = 𝑓𝑓 𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏 − 𝛻𝛻𝑏𝑏𝛻𝛻𝑎𝑎 𝜔𝜔𝑐𝑐.

Definition
Let 𝛻𝛻𝑎𝑎 be a derivative operator. Let 𝜔𝜔𝑎𝑎 be a dual vector field and 𝑓𝑓 be a smooth 
function. We calculate the action of two derivative operators applied to 𝑓𝑓𝜔𝜔𝑎𝑎:

𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏(𝑓𝑓𝜔𝜔𝑐𝑐) = 𝛻𝛻𝑎𝑎(𝜔𝜔𝑐𝑐𝛻𝛻𝑏𝑏𝑓𝑓 + 𝑓𝑓𝛻𝛻𝑎𝑎𝜔𝜔𝑐𝑐) =
= (𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏𝑓𝑓)𝜔𝜔𝑐𝑐 + 𝛻𝛻𝑏𝑏𝑓𝑓𝛻𝛻𝑎𝑎𝜔𝜔𝑐𝑐 + 𝛻𝛻𝑎𝑎𝑓𝑓𝛻𝛻𝑏𝑏𝜔𝜔𝑐𝑐 + 𝑓𝑓𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏𝜔𝜔𝑐𝑐



• The tensor (𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏 − 𝛻𝛻𝑏𝑏𝛻𝛻𝑎𝑎)𝜔𝜔𝑐𝑐 at point p depends only on the value of 𝜔𝜔𝑐𝑐 at p.

→ Consequently, (𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏 − 𝛻𝛻𝑏𝑏𝛻𝛻𝑎𝑎) defines a linear map from dual vectors at p to type (0,3) tensors at p; i.e., its action
is that of a tensor of type (1,3).

If we substract from this the tensor 𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏(𝑓𝑓𝜔𝜔𝑐𝑐), the first three terms of the right-hand side of the definition will
cancel the corresponding terms of the expression for 𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏(𝑓𝑓𝜔𝜔𝑐𝑐) and we obtain the simple result:

𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏 − 𝛻𝛻𝑏𝑏𝛻𝛻𝑎𝑎)(𝑓𝑓𝜔𝜔𝑐𝑐 = 𝑓𝑓 𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏 − 𝛻𝛻𝑏𝑏𝛻𝛻𝑎𝑎 𝜔𝜔𝑐𝑐.

Definition
There exists a a tensor field 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑 such that for all dual vector fiels 𝜔𝜔𝑐𝑐, we have:

𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏𝜔𝜔𝑐𝑐 − 𝛻𝛻𝑏𝑏𝛻𝛻𝑎𝑎𝜔𝜔𝑐𝑐 = 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑𝜔𝜔𝑑𝑑

where 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑 is called the Riemann curvature tensor.



Parallel transport around a small closed curve

1. We can construct a small closed loop at 𝑝𝑝 ∈ 𝑀𝑀 by choosing a two-dimensional surface 𝑆𝑆 through 𝑝𝑝 and choosing
coordinates 𝑡𝑡 and 𝑠𝑠 in the surface.

2. Let’s consider the loop formed by moving Δ𝑡𝑡 along 𝑠𝑠 = 0 curve, folowed by moving Δ𝑠𝑠 along the t = Δ𝑡𝑡 curve,
and then moving back by Δ𝑡𝑡 and Δ𝑠𝑠. (See bellow.)

3. Let 𝑣𝑣𝑎𝑎 be a vector at 𝑝𝑝 and let us parallel transport 𝑣𝑣𝑎𝑎 around this closed loop.

„𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑 is directly related to the failure of a
vector to return to its initial value when parallel
transported around a small closed curve.”

GEOMETRIC INTERPRETATION OF THE RIEMANN TENSOR



It is easiest to compute the change in 𝑣𝑣𝑎𝑎 when we return to 𝑝𝑝 by letting 𝜔𝜔𝑎𝑎 be an arbitrary dual vector field and finding
the change in the scalar 𝑣𝑣𝑎𝑎𝜔𝜔𝑎𝑎 as we traverse the loop.

• For small Δ𝑡𝑡 the change, 𝛿𝛿1, in 𝑣𝑣𝑎𝑎𝜔𝜔𝑎𝑎 on the first leg of the path is

𝛿𝛿1 = �Δ𝑡𝑡
𝜕𝜕
𝜕𝜕𝜕𝜕

(𝑣𝑣𝑎𝑎𝜔𝜔𝑎𝑎)
(Δ𝑡𝑡/2,0)

• We may rewrite the change as
𝛿𝛿1 = �Δ𝑡𝑡𝑇𝑇𝑎𝑎𝛻𝛻𝑏𝑏(𝑣𝑣𝑎𝑎𝜔𝜔𝑎𝑎)

(Δ𝑡𝑡/2,0)
= �Δ𝑡𝑡𝑣𝑣𝑎𝑎𝑇𝑇𝑏𝑏𝛻𝛻𝑏𝑏𝜔𝜔𝑎𝑎 (Δ𝑡𝑡/2,0)

where 𝑇𝑇𝑏𝑏 is the tangent to the curves of constants 𝑠𝑠 and 𝑇𝑇𝑏𝑏𝛻𝛻𝑏𝑏𝑣𝑣𝑎𝑎 = 0.

Similar expressions hold for the changes 𝛿𝛿2, 𝛿𝛿3 and 𝛿𝛿4 on the other parts of the path. The two „ Δ𝑡𝑡 variations”, 𝛿𝛿1 and 𝛿𝛿3,
combine to yield

𝛿𝛿1 = Δ𝑡𝑡 𝑣𝑣𝑎𝑎 �𝑇𝑇𝑏𝑏𝛻𝛻𝑏𝑏𝜔𝜔𝑎𝑎 (Δ𝑡𝑡/2,0) − �𝑣𝑣𝑎𝑎𝑇𝑇𝑏𝑏𝛻𝛻𝑏𝑏𝜔𝜔𝑎𝑎 (Δ𝑡𝑡/2,Δ𝑠𝑠) ,

and 𝛿𝛿2 and 𝛿𝛿4 combine similarly.

• Since the term in brackets vanishes as Δ𝑠𝑠 → 0, this shows that to first order in Δ𝑡𝑡 and Δ𝑠𝑠, the total change in 𝑣𝑣𝑎𝑎𝜔𝜔𝑎𝑎
(and thus the total change in 𝑣𝑣𝑎𝑎) vanishes.

→ Parallel transport is path-independent to first-order in Δ𝑡𝑡 and Δ𝑠𝑠.

Parallel transport (first-order change in 𝑣𝑣𝑎𝑎𝜔𝜔𝑎𝑎) 



Parallel transport (second-order change in 𝑣𝑣𝑎𝑎𝜔𝜔𝑎𝑎) 

To calculate the second order change in 𝑣𝑣𝑎𝑎𝜔𝜔𝑎𝑎, we need to evaluate the term in brakets to first order.

→ Thus, to second order in Δ𝑡𝑡,Δ𝑠𝑠, we find
𝛿𝛿1 + 𝛿𝛿3 = −Δ𝑡𝑡 Δ𝑠𝑠 𝑣𝑣𝑎𝑎𝑆𝑆𝑐𝑐𝛻𝛻𝑐𝑐(𝑇𝑇𝑏𝑏𝛻𝛻𝑏𝑏𝜔𝜔𝑎𝑎),

where, to this accuracy, we may evaluate all tensors at 𝑝𝑝.

Procedure
1. We consider the curve 𝑡𝑡 = Δ𝑡𝑡/2 and imagine parallel transporting 𝑣𝑣𝑎𝑎 and 𝑇𝑇𝑏𝑏𝛻𝛻𝑏𝑏𝜔𝜔𝑎𝑎 along this curve

from (Δ𝑡𝑡/2,0) to (Δ𝑡𝑡/2,Δ𝑠𝑠).
2. Now to first order in Δ𝑠𝑠, 𝑣𝑣𝑎𝑎 at (Δ𝑡𝑡/2,Δ𝑠𝑠) equals the parallel transport of 𝑣𝑣𝑎𝑎 at (Δ𝑡𝑡/2,0) along this

curve, since as remarked above, parallel transport is path-independent to first order.
3. On the other hand, to first order, the term 𝑇𝑇𝑏𝑏𝛻𝛻𝑏𝑏𝜔𝜔𝑎𝑎 at (Δ𝑡𝑡/2,Δ𝑠𝑠) will differ from the parallel

transport of that quantity from (Δ𝑡𝑡/2,0) by the amount Δ𝑠𝑠 𝑆𝑆𝑐𝑐𝛻𝛻𝑐𝑐(𝑇𝑇𝑏𝑏𝛻𝛻𝑏𝑏𝜔𝜔𝑎𝑎), where 𝑆𝑆𝑐𝑐 is the tangent
to the curves of constant 𝑡𝑡.



Adding the similar contributions for 𝛿𝛿2 and 𝛿𝛿4, we find the total change in 𝑣𝑣𝑎𝑎𝜔𝜔𝑎𝑎 is

𝛿𝛿 𝑣𝑣𝑎𝑎𝜔𝜔𝑎𝑎 = Δ𝑡𝑡 Δ𝑠𝑠 𝑣𝑣𝑎𝑎[𝑇𝑇𝑐𝑐𝛻𝛻𝑐𝑐 𝑆𝑆𝑏𝑏𝛻𝛻𝑏𝑏𝜔𝜔𝑎𝑎 − 𝑆𝑆𝑐𝑐𝛻𝛻𝑐𝑐(𝑇𝑇𝑏𝑏𝛻𝛻𝑏𝑏𝜔𝜔𝑎𝑎)]
= Δ𝑡𝑡 Δ𝑠𝑠 𝑣𝑣𝑎𝑎𝑇𝑇𝑐𝑐𝑆𝑆𝑐𝑐(𝛻𝛻𝑐𝑐𝛻𝛻𝑏𝑏 − 𝛻𝛻𝑏𝑏𝛻𝛻𝑐𝑐)𝜔𝜔𝑎𝑎
= Δ𝑡𝑡 Δ𝑠𝑠 𝑇𝑇𝑐𝑐𝑆𝑆𝑏𝑏𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑑𝑑𝜔𝜔𝑑𝑑;

• The above equation can hold for all 𝜔𝜔𝑎𝑎 if and only if the total change in 𝑣𝑣𝑎𝑎 is

𝛿𝛿𝑣𝑣𝑎𝑎 = Δ𝑡𝑡 Δ𝑠𝑠 𝑣𝑣𝑑𝑑 𝑇𝑇𝑐𝑐𝑆𝑆𝑏𝑏𝑅𝑅𝑐𝑐𝑐𝑐𝑑𝑑𝑎𝑎.

The result shows that the Riemann tensor indeed directly measures the path dependence of parallel transport!

We may express the action of the commutator of derivative operators on arbitrary tensor fields in terms of the Riemann
tensor. We let 𝜔𝜔𝑎𝑎 be a dual vector field to find the expression for a vector field 𝑡𝑡𝑎𝑎.

Thus we obtain:
(𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏 − 𝛻𝛻𝑏𝑏𝛻𝛻𝑎𝑎)𝑡𝑡𝑐𝑐 = −𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑡𝑡𝑑𝑑 .

Here we used the fact that the
coordinate vector fields 𝑇𝑇𝑎𝑎 and
𝑆𝑆𝑎𝑎 commute

Definition of the Riemann tensor
(recall the 3rd slide)

Accurate to 2nd order in Δ𝑡𝑡 and Δ𝑠𝑠



PROPERTIES OF RIEMANN TENSOR
By induction, for an arbitrary tensor field 𝑇𝑇𝑐𝑐1⋯𝑐𝑐𝑘𝑘𝑑𝑑1⋯𝑑𝑑𝑙𝑙 we find

(𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏 − 𝛻𝛻𝑏𝑏𝛻𝛻𝑎𝑎)𝑇𝑇𝑐𝑐1⋯𝑐𝑐𝑘𝑘𝑑𝑑1⋯𝑑𝑑𝑙𝑙 = −�
𝑖𝑖=1

𝑘𝑘

𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑐𝑐𝑖𝑖𝑇𝑇𝑐𝑐1⋯𝑒𝑒⋯𝑐𝑐𝑘𝑘𝑑𝑑1⋯𝑑𝑑𝑙𝑙 + �
𝑗𝑗=1

𝑙𝑙

𝑅𝑅𝑎𝑎𝑎𝑎𝑑𝑑𝑗𝑗
𝑒𝑒𝑇𝑇𝑐𝑐1⋯𝑐𝑐𝑘𝑘𝑑𝑑1⋯𝑒𝑒⋯𝑑𝑑𝑙𝑙

Next we establish four key properties of the Riemann tensor:
1. 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑑𝑑 = −𝑅𝑅𝑏𝑏𝑎𝑎𝑐𝑐𝑑𝑑 .
2. 𝑅𝑅[𝑎𝑎𝑎𝑎𝑎𝑎]

𝑑𝑑 = 0.
3. For the derivative operator 𝛻𝛻𝑎𝑎 naturally associated with the metric, 𝛻𝛻𝑎𝑎𝑔𝑔𝑏𝑏𝑐𝑐 = 0, we have

𝑅𝑅𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑 = −𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎

4. The Bianchi identity holds:
𝛻𝛻[𝑎𝑎𝑅𝑅𝑏𝑏𝑏𝑏]𝑑𝑑

𝑒𝑒 = 0.

Property (3) follows from this equation applied to the metric 𝑔𝑔𝑎𝑎𝑎𝑎. → The we find that
0 = (𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏 − 𝛻𝛻𝑏𝑏𝛻𝛻𝑎𝑎)𝑔𝑔𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝑔𝑔𝑒𝑒𝑑𝑑 + 𝑅𝑅𝑎𝑎𝑎𝑎𝑑𝑑𝑒𝑒𝑔𝑔𝑐𝑐𝑐𝑐 = 𝑅𝑅𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑 + 𝑅𝑅𝑎𝑎𝑏𝑏𝑑𝑑𝑑𝑑

which yields property (3).

Common forms:         𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 + 𝑅𝑅𝑎𝑎𝑐𝑐𝑐𝑐𝑏𝑏 + 𝑅𝑅𝑎𝑎𝑑𝑑𝑑𝑑𝑑𝑑 = 0 (1st Bianchi identity)
𝑅𝑅𝑎𝑎𝑏𝑏𝑐𝑐𝑐𝑐;𝑒𝑒 + 𝑅𝑅𝑎𝑎𝑏𝑏𝑑𝑑𝑑𝑑;𝑐𝑐 + 𝑅𝑅𝑎𝑎𝑏𝑏𝑒𝑒𝑒𝑒;𝑑𝑑 = 0 (2nd Bianchi identity)



It follows from properties (1 – 3) that the Riemann tensor also satisfies the following symmetry property:
𝑅𝑅𝑎𝑎𝑏𝑏𝑐𝑐𝑑𝑑 = 𝑅𝑅𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 .

Finally, to prove the property (4), i.e. Bianchi identity , we apply the commutator of derivative operators to the derivative of
a dual field vector:

(𝛻𝛻𝑎𝑎𝛻𝛻𝑏𝑏 − 𝛻𝛻𝑏𝑏𝛻𝛻𝑎𝑎)𝛻𝛻𝑐𝑐𝜔𝜔𝑑𝑑 = 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑒𝑒𝛻𝛻𝑒𝑒𝜔𝜔𝑑𝑑 + 𝑅𝑅𝑎𝑎𝑎𝑎𝑑𝑑𝑓𝑓𝛻𝛻𝑐𝑐𝜔𝜔𝑓𝑓.

On the other hand, we have
𝛻𝛻𝑎𝑎(𝛻𝛻𝑏𝑏𝛻𝛻𝑐𝑐𝜔𝜔𝑑𝑑 − 𝛻𝛻𝑐𝑐𝛻𝛻𝑏𝑏𝜔𝜔𝑑𝑑) = 𝛻𝛻𝑎𝑎(𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏

𝑒𝑒𝜔𝜔𝑒𝑒) = 𝜔𝜔𝑒𝑒𝛻𝛻𝑎𝑎𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒 + 𝑅𝑅𝑏𝑏𝑏𝑏𝑏𝑏𝑒𝑒𝛻𝛻𝑎𝑎𝜔𝜔𝑒𝑒.

If we antisymmetrize over a, b, and c in the last two equations, the left-hand side becomes equal. Equality of the right-hand
side yields

𝑅𝑅[𝑎𝑎𝑎𝑎𝑎𝑎]
𝑒𝑒𝛻𝛻𝑒𝑒𝜔𝜔𝑑𝑑 + 𝑅𝑅[𝑎𝑎𝑎𝑎|𝑑𝑑|

𝑓𝑓𝛻𝛻𝑐𝑐]𝜔𝜔𝑓𝑓 = 𝜔𝜔𝑒𝑒𝛻𝛻[𝑎𝑎𝑅𝑅𝑏𝑏𝑏𝑏]𝑑𝑑
𝑒𝑒 + 𝑅𝑅[𝑏𝑏𝑏𝑏|𝑑𝑑|

𝑒𝑒𝛻𝛻𝑎𝑎]𝜔𝜔𝑒𝑒,

The first term on the left-hand side vanishes by the equation 𝑅𝑅[𝑎𝑎𝑎𝑎𝑎𝑎]
𝑑𝑑 = 0, i.e. property (2), while the second terms on both

sides cancel each other. Thus, we obtain for all 𝜔𝜔𝑒𝑒,
𝜔𝜔𝑒𝑒𝛻𝛻[𝑎𝑎𝑅𝑅𝑏𝑏𝑏𝑏]𝑑𝑑

𝑒𝑒 = 0,
which yields property (4).

The vertical bars indicate that we do not antisymmetrize over d.



DECOMPOSITION OF RIEMANN TENSOR

Ricci tensor and Ricci scalar

It is useful to decompose the Riemann tensor into a trace part and a trace-free part. By the antisymmetry properties
(1) and (3), the trace of the Riemann tensor over its first two or last indices vanishes. However, its trace over the
second and fourth indeces defines, the Ricci tensor:

𝑅𝑅𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎𝑏𝑏

𝑅𝑅𝑎𝑎𝑎𝑎 satisfies the symmetry property
𝑅𝑅𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑐𝑐𝑐𝑐.

The scalar curvature is defined as the trace of the Ricci tensor:
𝑅𝑅 = 𝑅𝑅𝑎𝑎𝑎𝑎.



Weyl tensor

The trace-free part is called the Weyl tensor, 𝐶𝐶𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏, and it is defined for manifolds of dimension 𝑛𝑛 ≥ 3 by the
equation

𝑅𝑅𝑎𝑎𝑏𝑏𝑏𝑏𝑏𝑏 = 𝐶𝐶𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎+
2

𝑛𝑛 − 2
(𝑔𝑔𝑎𝑎[𝑐𝑐𝑅𝑅𝑑𝑑]𝑏𝑏 − 𝑔𝑔𝑏𝑏[𝑐𝑐𝑅𝑅𝑑𝑑]𝑎𝑎) −

2
(𝑛𝑛 − 1)(𝑛𝑛 − 2)

𝑅𝑅𝑔𝑔𝑎𝑎[𝑐𝑐𝑔𝑔𝑑𝑑]𝑏𝑏.

𝑅𝑅𝑎𝑎𝑎𝑎 satisfies the symmetry property
𝑅𝑅𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑐𝑐𝑐𝑐.

• The Weyl tensor satisfies the symmetric properties (1), (2), and (3) of the Riemann tensor as well as being trace 
free on all its indices.

• It also bhaves in a very simple manner under conformal transformations of the metric: for this reason is 
sometimes called the conformal tensor.



Contracted Bianchi identity

The contraction of the Bianchi identity leads to an important equation satisfied by 𝑅𝑅𝑎𝑎𝑎𝑎:
𝛁𝛁𝑎𝑎𝑅𝑅𝑏𝑏𝑏𝑏𝑑𝑑𝑎𝑎 + 𝛁𝛁𝑏𝑏𝑅𝑅𝑐𝑐𝑐𝑐 − 𝛁𝛁𝑐𝑐𝑅𝑅𝑏𝑏𝑏𝑏 = 0. (Contracted Bianci identity)

Raising the index d with the metric and contracting over b and d, we obtain  symmetry property
𝛁𝛁𝑎𝑎𝑅𝑅𝑐𝑐𝑎𝑎 + 𝛁𝛁𝑏𝑏𝑅𝑅𝑐𝑐𝑏𝑏 + 𝛁𝛁𝑐𝑐𝑅𝑅 = 0

or
𝛁𝛁𝑎𝑎𝐺𝐺𝑎𝑎𝑎𝑎 = 0,

where 
𝐺𝐺𝑎𝑎𝑎𝑎 = 𝑅𝑅𝑎𝑎𝑎𝑎 −

1
2
𝑅𝑅𝑔𝑔𝑎𝑎𝑎𝑎.

• The Einstein tensor (and the twice contracted Bianchi identity) plays an important role in the Einstein equation 
which relate the geometry of spacetime to the distribution of matter within it. (As we shall see later!)

Einstein tensor

vacuum if it’s equal to 0.
matter if it’s not 0!



Thank you for your attention!

Lecture notes will be available shortly at https://wigner.hu/~barta/GRcourse2020/

Dániel Barta
E-mail: barta.daniel@wigner.hu
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