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WHAT IS A TANGENT SPACE?

Tangent spaces to manifolds:

To aid our intuition of local Cartesian coordinates, it is useful to
consider the simple example of a two-dimensional Riemannian
manifold, which we can often consider as a generally curved

The tangent plane T» to the curved surface embedded in three-dimensional Euclidean space.

surface M at the point P. A simple example is the surface of a sphere, shown in the left-
hand side Figure.

Informally:

At any arbitrary point P we can find coordinates x and y (say) such that in the neighbourhood of P we have
ds? = dx? + dx?. It thus follows that a Euclidean two-dimensional space (a plane) will match the manifold
locally at P. This Euclidean space is called the tangent space T, to the manifold at P.



In a neighbarhood U7, of each point p € M
we consider the curves that go through p
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Theorem

Let M be an n-dimensional manifold. Let p € M and let T, denote
the tangent space at p. Then dim T, = n.

Proof: We shall show that dim T, = n by constructing a basis of T,
l.e., by finding n linearly independent tangent vectors which span
T,. Let ¥:0 —» U € R™ be a chart with p € O (see Fig. bellow). If
f € F, then by definition foyp™2:U > RisC®.Foru=1,...,n

define X,,: F - R by

d
X, ()= 9™
Ix¥ ()
where (x1,..,x™) are the Cartesian coordinates of R™. Then
(X1, ..,X™) are tangent vectors, and it is easily sen that they are
linearly independent. (To show that they span T,, — along with the

rest of the proof — see Wald p. 16.)

IHlustration for the directional
derivates, X, used in the theorem.




Definition

The basis {X,} of T, is called a coordinate basis where X,, is commonly denoted by d/9x*. If one
choses a different chart, y’, an other coordinate basis {X,,} is obtained.

Definition
One can express X, in terms of the new basis {X,,} by using the chain rule:

_wn  0x"V
A = 2v=0 5kl
where x'V denotes the vth component of the map ¥’ o 1. Consequently, the components of v’V of a
vector v in the new coordinate basis are related to the components v# in the old basis by
ox"v
- Z=0 v¥ Oxkt "
The above equation is known as the vector transformation law.

Xy,

Generalization: In any coordinate basis, the components of the tangent vector T# € T,, to a smooth curve
(C™) are given by

dx*
TH =2
dt



REMARKS

* In the discussion above, we fixed a point p € M and considered the tangent space,
T, at p. At another point g € Mone may as well define 7.

* It is important to emphasize that, given only the structure of a manifold, there is
no natural way of identifying T, with T,,; that is, there is no way of determining
whether a tangent vector at g is the “same” as a tangent vector at p.

 After the next lecture, we will see that when additional structure (namely, a
connection or derivate operator) is given on the manifold, one has a notation
“parallel transport” of vectors from p to g along a curve joining these points. —
If the curvature is non-zero, the, the identification of T, with T,, will depend on the

choise of curve.

Parallel Transport
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A vector field is
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Definition

A tangent field v on a manifold M is an assignment of a tangent vector v|,, € T,,, at each point p € M.
Despite the fact that the tangent spaces T,, and T, at different points are different vector spaces, there is a
natural notation of what it means for v to vary smoothly from point to point. If f is a smooth (C*)
function , then each p € M, v|, € T,(y) is a number, i.e., v(f) is a function on M.

Theorem

The tangent field v is said to be smooth if for each function f, the function v(f) is also smooth. Since the
coordinate basis field X,, are easily verified to be smooth — a vector field v is smooth if and only if its
coordinate basis components, v#, are smooth functions.

We described the tangent vectors as “infinitesimal displacements™.
Let’s see the precise meaning given to this picture!



Definition

A one-parameter group of diffeomorphisms ¢; isa C* map from R x M — M such that for fixed t €
R, p:: M — M is a diffeomorphism and for all ¢, s € R, we have ¢; o pg = ¢s4s.

(The relation implies that ¢,— Is the identity map.)

* We can associate a vector field v to the diffeomorphism ¢; as follows: For fixed p € M,
d:(p): R = M is a curve, called the orbit of ¢, which passes through p at t = 0.

* Let’s define vlp € Ty(r) to be the tangent to this curve at t = 0. Then v, associated to a
one-parameter group of (finite) transformations of M, can be thought of as the
infinitesimal generator of these transformations.



Definition

A family of curves in M is called integral curves if one and only one curve passes through each point p €
M and the tangent to this curve is v|, at p.

* If we pick a coordinate system in the neighbourhood of p, we see that the problem of

finding such curves reduces to solving the system,

dx”_ peod .
=V (x*, ., x™)

of ordinary differential equations in R", where v* is the uth component of v in the
coordinate basis {d/dx"}.

Such a system of equations has a unique solution given a starting point at t = 0, and thus every smooth
vector field v has a unique family of integral curves.



DUAL SPACES AND ONE-FORMS

Previously we defined vector as a basis-dependent set of numbers which transform according to above
learned ways when a different basis is chosen. <— Although, this description is mathematically correct
but it hides the geometric nature of vectors!

General Relativity indeed operates with geometric (i.e., basis-independent) objects. Dual spaces and
dual vectors sneak into GR and, therefore, let’s have a closer look at them.

Definition

Given a vector space V, we define its dual space V* to be the set of all linear transformations ¢:V —
V*. The ¢ is called a linear functional.

 In other words, ¢ maps a vector v € V to and element of T (lets just assume that F = R). If you take all
the possible ways that a ¢ can take in such vectors and produce real numbers, we get V*.

Definition
A one-form is a linear function f on a linear space if

f(ad + Bb)=af (@) + Bf ()

for any real numbers a, § and vectors a and b.




EXAMPLES OF DUAL SPACES

Here is a list of examples of dual spaces:

e Example 1: Let V = R3 and ¢ : R* — R, then p(z,y, 2) = 2z + 3y + 4z is a member of V*.

® Example 2: Let V' = P, (the set of polynomials with degreee n) and ¢ : P, — R, then
¢(p) = p(1) is a member of V*. Concretely, (1 + 2z +32%) =1+2-14+3-1> = 6.

® Example 3: Let V = M,,, «x» (the set of matrices with dimensions m X m) and ¢ : M;,xn — R, then
¢(A) = Trace(A) is a member of V'*. In specific,

([ 3 ) -resee

® Example 4: Let V = C(|0, 1]) (the set of all continuous function on the interval [0, 1]) and
¢ : C[(0,1)] = R, then ¢(g) = ful g(z)dz is a member of V'*. For instance,

p(e*) = fulemda: —el —1=e—1

As it turns out, the elements of V' * satisfy the axioms of a vector space and therefore V' * is indeed a
vector space itself.



DUAL BASIS

Ifb={vy,Vva,...,Vn} is a basis of vector space V, then b* = {p1,p2,...,n} is a basis of V*_ If
you define ¢ via the following relations, then the basis you get is called the dual basis:

[F}i(ﬂ'lv1+"'+ﬂnvn):ﬂi: t=1,...,n

T
A vector veV,a;€F

It is as if the functional ¢; acts on a vector v € V and returns the z-th component a;. Another way to

write the above relations is if you set @;(v;) = d;;.

Then any functional ¢ can be written as a linear combination of the dual basis vectors, 1.e.

¢ =p(vi)er +e(va)p2 +... + ©(Va)pn




EXAMPLES OF DUAL BASIS

Let’s see a concrete example. Assume ¥V = R? and a vector basis b = {(2,1), (3,1)}, then what
IS the dual basis b*?

By definition, it's ;(v;) = d;;, therefore:

p1(vi) =01 =1 ¢1(2,1) =1 ¢1[(2(1,0) +1(0,1)] =1 & 2¢1(1,0) + 1¢1(0,1) =1
p1(v2) =612 =04 ¢1(3,1) =0 & 1 [3(1,0) + 1(0,1)] = 0 & 3¢1(1,0) + 1¢1(0,1) =0

5 1) (o] o

You get ¢1(1,0) = —1, ¢1(0,1) = 3. Therefore:

If you solve the system:

p1(z,y) = z91(1,0) + yo1(0,1) = —z + 3y

Similarly one can prove that:

p2(z,y) = zp2(1,0) + yp2(0,1) = =z — 2y



Therefore the dual basis b* is equal to {1, 2} = {—x + 3y, x — 2y}. Now here comes the magic.
Suppose that you have a function ¢ = 8x — 7y and you would like to write it as a linear combination of
the dual basis. How would you do?

¢ =p(vi)e1 +@(v2)p2 + ... + ©(Va)pn

Where vy = (2,1) and vg = (3, 1). Let us do the math:

f,t.’.‘-'["il’-]_:l ‘P{"z}
o ——
8z — Ty = ¢(2,1) - (—z +3y) + ¢(3,1) - (z — 2y)
o1 @2

8z —Ty=(8-2—-7-1)-(—z+3y)+(8-3—-7-1) - (xz —2y)
8x — Ty =9(—z + 3y) + 17(xz — 2y)
8x —Ty=8x — Ty



THE DUAL OF A DUAL SPACE

Recall that the dual of space is a vector space on its own right, since the linear functionals ¢ satisfy the
axioms of a vector space. But if V' * is a vector space, then it is perfectly legitimate to think of its dual
space, Just like we do with any other vector space. This might feel too recursive, but hold on. The double
dual space is (V*)* = V** and is the set of all linear transformations ¢ : V* — F.

ISOMORPHISMS

When we defined V' * from V we did so by picking a special basis (the dual basis), therefore the
isomorphism from V to V'* is not canonical. It turns out that the isomorphism between the initial vetor
space V' and its double dual, V' **, is canonical as we shall see right away. Letv € V, ¢ € V' * and

v € V**. We can now define a linear map:

u(p) = ¢(u)

This is a canonical isomorphism between V' and V' **. Mind that we are talking about finite dimensional

vector spaces V, i.e. dim(V') < oo.



aUTLO0K. CONNECTION TO GENERAL RELATIVITY

Consider the space of partial derivative operators. How do we know that this is a vector space? Let's
check:

d(af +bg) L of 8
k% pk +ba as (f)+b (9)

b 8 0 o
) Bz’ 822’ Az

And then let us define its dual space b* = {da:l, dz?,...,dz" } By definition the functionals dz* must

fulfill the following relations:
. d :
dz’ (_) — 5
Oz’ J

So, dzx’s in reality are linear functionals that act on elements of the partial derivatives vector space. They

9
Bk —(af +bg) =

Then let us pick up a basis:

are not be thought as scalars, i.e. as infinitesimal displacements along the coordinate axis.



So, dz's in reality are linear functionals that act on elements of the partial derivatives vector space. They
are not be thought as scalars, 1.e. as infinitesimal displacements along the coordinate axis.

Now suppose we have a scalar function f(z) and we define its total differential as:

—ﬁdml—l—ﬁd:nﬂ—l—..,—l—ﬁdﬂ:“

df =
/ Oxl dx2 ox™

And we would like to calculate the directional derivative of f(z) along the direction of some vector

v € V, that is calculate the rate of change of f(z) along v.

a (. 0
df(v) = 6—;:13:‘ (1}3@)

Recall now that the basis vectors dx's were chosen in such a way that when act upon % they “select”

the 2-th component. Therefore:

of
oz’

"Ut

df(u) =
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Now, that we have succesfully survived today’s lecture...

Next week: let’s resume with fensors

Lecture notes on the course and other materials (e.g. recommended text books) will be available shortly at
https://wigner.hu/~barta/GRcourse2020/

Daniel Barta
E-mail: barta.daniel@wigner.hu
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