
INTRODUCTION TO GENERAL 
RELATIVITY Tangent space, dual space



WHAT IS A TANGENT SPACE?
Tangent spaces to manifolds:

To aid our intuition of local Cartesian coordinates, it is useful to
consider the simple example of a two-dimensional Riemannian
manifold, which we can often consider as a generally curved
surface embedded in three-dimensional Euclidean space.

A simple example is the surface of a sphere, shown in the left-
hand side Figure.

The tangent plane 𝑇𝑇𝑃𝑃 to the curved
surface M at the point P.

Informally:

At any arbitrary point P we can find coordinates x and y (say) such that in the neighbourhood of P we have
𝑑𝑑𝑑𝑑2 = 𝑑𝑑𝑥𝑥2 + 𝑑𝑑𝑥𝑥2. It thus follows that a Euclidean two-dimensional space (a plane) will match the manifold
locally at P. This Euclidean space is called the tangent space 𝑇𝑇𝑃𝑃 to the manifold at P.



TANGENT SPACES AND VECTOR FIELDS

∈

A tangent vector is a 1st order 
differential operator

Under change of local 
coordinates



Theorem
Let M be an n-dimensional manifold. Let 𝑝𝑝 ∈ ℳ and let 𝑇𝑇𝑝𝑝 denote
the tangent space at p. Then dim𝑇𝑇𝑝𝑝 = 𝑛𝑛.

Proof: We shall show that dim𝑇𝑇𝑝𝑝 = 𝑛𝑛 by constructing a basis of 𝑇𝑇𝑝𝑝
i.e., by finding 𝑛𝑛 linearly independent tangent vectors which span
𝑇𝑇𝑝𝑝. Let 𝜓𝜓:𝑂𝑂 → 𝑈𝑈 ∈ ℝ𝑛𝑛 be a chart with 𝑝𝑝 ∈ 𝑂𝑂 (see Fig. bellow). If
𝑓𝑓 ∈ ℱ, then by definition 𝑓𝑓 ∘ 𝜓𝜓−1:𝑈𝑈 → ℝ is C∞. For 𝜇𝜇 = 1, … ,𝑛𝑛
define 𝑋𝑋𝜇𝜇:ℱ → ℝ by

�𝑋𝑋𝜇𝜇 𝑓𝑓 =
𝜕𝜕
𝜕𝜕𝑥𝑥𝜇𝜇

(𝑓𝑓 ∘ 𝜓𝜓−1)
𝜓𝜓(𝑝𝑝)

where 𝑥𝑥1, … , 𝑥𝑥𝑛𝑛 are the Cartesian coordinates of ℝ𝑛𝑛 . Then
𝑋𝑋1, … ,𝑋𝑋𝑛𝑛 are tangent vectors, and it is easily sen that they are

linearly independent. (To show that they span 𝑇𝑇𝑝𝑝 – along with the
rest of the proof – see Wald p. 16.)

Illustration for the directional
derivates, 𝑋𝑋𝜇𝜇 used in the theorem.



Definition
The basis 𝑋𝑋𝜇𝜇 of 𝑇𝑇𝑝𝑝 is called a coordinate basis where 𝑋𝑋𝜇𝜇 is commonly denoted by ⁄𝜕𝜕 𝜕𝜕𝑥𝑥𝜇𝜇. If one
choses a different chart, 𝜓𝜓′, an other coordinate basis 𝑋𝑋𝜈𝜈′ is obtained.

Definition
One can express 𝑋𝑋𝜇𝜇 in terms of the new basis 𝑋𝑋𝜈𝜈′ by using the chain rule:

𝑋𝑋𝜇𝜇 = ∑𝜈𝜈=0𝑛𝑛 �𝜕𝜕𝑥𝑥′𝜈𝜈

𝜕𝜕𝑥𝑥𝜇𝜇 𝜓𝜓(𝑝𝑝)
𝑋𝑋𝜈𝜈′ ,

where 𝑥𝑥′𝜈𝜈 denotes the 𝜈𝜈th component of the map 𝜓𝜓′ ∘ 𝜓𝜓−1. Consequently, the components of 𝑣𝑣′𝜈𝜈 of a
vector 𝑣𝑣 in the new coordinate basis are related to the components 𝑣𝑣𝜇𝜇 in the old basis by

𝑣𝑣′𝜈𝜈 = ∑𝜇𝜇=0𝑛𝑛 𝑣𝑣𝜇𝜇 𝜕𝜕𝑥𝑥′𝜈𝜈

𝜕𝜕𝑥𝑥𝜇𝜇
.

The above equation is known as the vector transformation law.

Generalization: In any coordinate basis, the components of the tangent vector 𝑇𝑇𝜇𝜇 ∈ 𝑇𝑇𝑝𝑝 to a smooth curve
(𝒞𝒞∞) are given by

𝑇𝑇𝜇𝜇 = 𝑑𝑑𝑥𝑥𝜇𝜇

𝑑𝑑𝑑𝑑
.



REMARKS
• In the discussion above, we fixed a point 𝑝𝑝 ∈ ℳand considered the tangent space,
𝑇𝑇𝑝𝑝 at 𝑝𝑝. At another point 𝑞𝑞 ∈ ℳone may as well define 𝑇𝑇𝑞𝑞.

• It is important to emphasize that, given only the structure of a manifold, there is
no natural way of identifying 𝑇𝑇𝑞𝑞 with 𝑇𝑇𝑝𝑝; that is, there is no way of determining
whether a tangent vector at 𝑞𝑞 is the “same” as a tangent vector at 𝑝𝑝.

• After the next lecture, we will see that when additional structure (namely, a
connection or derivate operator) is given on the manifold, one has a notation
“parallel transport” of vectors from 𝑝𝑝 to 𝑞𝑞 along a curve joining these points. →
If the curvature is non-zero, the, the identification of 𝑇𝑇𝑞𝑞 with 𝑇𝑇𝑝𝑝 will depend on the
choise of curve.



PARALLEL TRANSPORT
A vector field is 
parallel transported 
along a curve, when it 
mantains a constant 
angle with the tangent 
vector to the curve



Definition
A tangent field 𝑣𝑣 on a manifold ℳ is an assignment of a tangent vector |𝑣𝑣 𝑝𝑝 ∈ 𝑇𝑇𝑝𝑝, at each point 𝑝𝑝 ∈ ℳ.
Despite the fact that the tangent spaces 𝑇𝑇𝑝𝑝 and 𝑇𝑇𝑞𝑞 at different points are different vector spaces, there is a
natural notation of what it means for 𝑣𝑣 to vary smoothly from point to point. If 𝑓𝑓 is a smooth (𝒞𝒞∞)
function , then each 𝑝𝑝 ∈ ℳ, |𝑣𝑣 𝑝𝑝 ∈ 𝑇𝑇𝑝𝑝 𝑓𝑓 is a number, i.e., 𝑣𝑣(𝑓𝑓) is a function on ℳ.

Theorem
The tangent field 𝑣𝑣 is said to be smooth if for each function 𝑓𝑓, the function 𝑣𝑣(𝑓𝑓) is also smooth. Since the
coordinate basis field 𝑋𝑋𝜇𝜇 are easily verified to be smooth → a vector field 𝑣𝑣 is smooth if and only if its
coordinate basis components, 𝑣𝑣𝜇𝜇, are smooth functions.

We described the tangent vectors as “infinitesimal displacements”.
Let’s see the precise meaning given to this picture!



Definition
A one-parameter group of diffeomorphisms 𝜙𝜙𝑑𝑑 is a 𝒞𝒞∞ map from ℝ × ℳ →ℳ such that for fixed 𝑡𝑡 ∈
ℝ,𝜙𝜙𝑑𝑑:ℳ →ℳ is a diffeomorphism and for all 𝑡𝑡, 𝑑𝑑 ∈ ℝ, we have 𝜙𝜙𝑑𝑑 ∘ 𝜙𝜙𝑠𝑠 = 𝜙𝜙𝑑𝑑+𝑠𝑠 .

(The relation implies that 𝜙𝜙𝑑𝑑=0 is the identity map.)

• We can associate a vector field 𝑣𝑣 to the diffeomorphism 𝜙𝜙𝑑𝑑 as follows: For fixed 𝑝𝑝 ∈ ℳ,
𝜙𝜙𝑑𝑑 𝑝𝑝 :ℝ →ℳ is a curve, called the orbit of 𝜙𝜙𝑑𝑑, which passes through 𝑝𝑝 at 𝑡𝑡 = 0.

• Let’s define |𝑣𝑣 𝑝𝑝 ∈ 𝑇𝑇𝑝𝑝 𝑓𝑓 to be the tangent to this curve at 𝑡𝑡 = 0. Then 𝑣𝑣, associated to a
one-parameter group of (finite) transformations of ℳ , can be thought of as the
infinitesimal generator of these transformations.



Definition
A family of curves in ℳ is called integral curves if one and only one curve passes through each point 𝑝𝑝 ∈
ℳ and the tangent to this curve is |𝑣𝑣 𝑝𝑝 at 𝑝𝑝.

• If we pick a coordinate system in the neighbourhood of 𝑝𝑝, we see that the problem of
finding such curves reduces to solving the system,

𝑑𝑑𝑥𝑥𝜇𝜇

𝑑𝑑𝑡𝑡
= 𝑣𝑣𝜇𝜇(𝑥𝑥1, … , 𝑥𝑥𝑛𝑛)

of ordinary differential equations in ℝ𝑛𝑛, where 𝑣𝑣𝜇𝜇 is the 𝜇𝜇th component of 𝑣𝑣 in the
coordinate basis ⁄{𝜕𝜕 𝜕𝜕𝑥𝑥𝜇𝜇}.

Such a system of equations has a unique solution given a starting point at 𝑡𝑡 = 0, and thus every smooth
vector field 𝑣𝑣 has a unique family of integral curves.



DUAL SPACES AND ONE-FORMS
Previously we defined vector as a basis-dependent set of numbers which transform according to above
learned ways when a different basis is chosen. ← Although, this description is mathematically correct
but it hides the geometric nature of vectors!

General Relativity indeed operates with geometric (i.e., basis-independent) objects. Dual spaces and
dual vectors sneak into GR and, therefore, let’s have a closer look at them.

Definition
Given a vector space 𝑽𝑽, we define its dual space 𝑽𝑽∗ to be the set of all linear transformations 𝜙𝜙:𝑽𝑽 →
𝑽𝑽∗. The 𝜙𝜙 is called a linear functional.

• In other words, φ maps a vector �⃗�𝑣 ∈ 𝑽𝑽 to and element of 𝔽𝔽 (lets just assume that 𝔽𝔽 = ℝ). If you take all
the possible ways that a φ can take in such vectors and produce real numbers, we get 𝑽𝑽∗.

Definition
A one-form is a linear function 𝑓𝑓 on a linear space if

𝑓𝑓(𝛼𝛼�⃗�𝑎 + 𝛽𝛽𝑏𝑏)=𝛼𝛼𝑓𝑓 �⃗�𝑎 + 𝛽𝛽𝑓𝑓 𝑏𝑏
for any real numbers 𝛼𝛼, 𝛽𝛽 and vectors �⃗�𝑎 and 𝑏𝑏.



EXAMPLES OF DUAL SPACES



DUAL BASIS



EXAMPLES OF DUAL BASIS
Let’s see a concrete example. Assume 𝑽𝑽 = ℝ2 and a vector basis 𝒃𝒃 = { 2,1 , (3,1)}, then what
is the dual basis 𝒃𝒃∗?





THE DUAL OF A DUAL SPACE

ISOMORPHISMS



OUTLOOK: CONNECTION TO GENERAL RELATIVITY
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Next week: let’s resume with tensors

Now, that we have succesfully survived today’s lecture... 

Lecture notes on the course and other materials (e.g. recommended text books) will be available shortly at 
https://wigner.hu/~barta/GRcourse2020/

Dániel Barta
E-mail: barta.daniel@wigner.hu
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